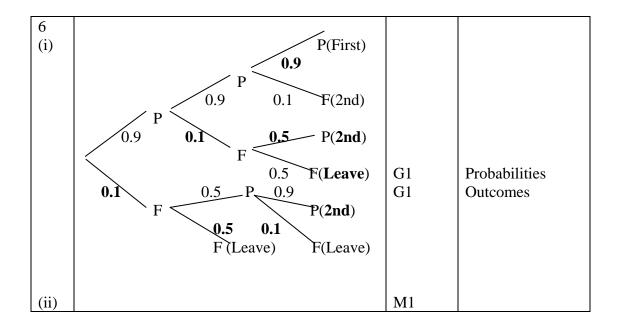
PMT

Mark Scheme 4766 June 2005


Statistics 1 (4766)

Qn	Answer	Mk	Comment
1 (i)	Mean = $657/20 = 32.85$	B1 cao	
(ii)	Variance = $\frac{1}{19}(22839 - \frac{657^2}{20}) = 66.13$ Standard deviation = 8.13	M1 A1 cao	
	32.85 + 2(8.13) = 49.11	M1 ft	Calculation of 49.11
	none of the 3 values exceed this so no outliers	A1 ft	
2 (i)	Length of journey		
	$ \begin{array}{c} 120\\ 100\\ 80\\ 60\\ 40\\ 20\\ 0\\ 2\\ 4\\ 6\\ 8\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	G1 G1 G1	For calculating 38,68,89,103,112,120 Plotting end points Heights inc (0,0)
(ii)	Median = 1.7 miles	B1	
	Lower quartile $= 0.8$ miles	M1	
	Upper quartile = 3 miles	M1	
	Interquartile range = 2.2 miles	A1 ft	
(iii)	The graph exhibits positive skewness	E1	

Statistics 1 (4766) June 2005

-			
3 (i)	P(X = 4) = $\frac{1}{40}$ (4)(5) = $\frac{1}{2}$ (Answer given)	B1	Calculation must be seen
(ii)	$E(X) = (2+12+36+80)\frac{1}{40}$ So $E(X) = 3.25$	M1 A1 cao	Sum of rp
	Var $(X) = (2+24+108+320)\frac{1}{40} - 3.25^2$	M1 M1 dep	Sum of r ² p -3.25 ²
	= 11.35 - 10.5625		
	= 0.7875	A1 cao	
(iii)	Expected number of weeks = $\frac{6}{40}$ x45 = 6.75 weeks	M1 A1	Use of np
4 (i)	Number of choices $= \begin{pmatrix} 6 \\ 3 \end{pmatrix} = 20$	M1 A1	For $\begin{pmatrix} 6 \\ 3 \end{pmatrix}$
(ii)	Number of ways = $\binom{6}{3} \times \binom{7}{4} \times \binom{8}{5}$	M1 M1	Correct 3 terms Multiplied
	$= 20 \times 35 \times 56$		
	= 39200	A1 cao	
(iii)	Number of ways of choosing 12 questions = $\binom{21}{12}$ = 293930	M1	For $\begin{pmatrix} 21\\12 \end{pmatrix}$
	Probability of choosing correct number from each section = $39200/293930$ = 0.133	M1 ft A1 cao	

5									
(i)		1	2	3	4	5	6		
	1	1	2	3	4	5	6		
	2	2	2	6	4	10	6		
	3	3	6	3	12	15	6		
	4	4	4	12	4	20	12	5.4	
	5	5	10	15	20	5	30	B1	All correct
	6	6	6	6	12	30	6		
(ii)	(A) P(1	LCM >	> 6) = 2	1/3				B1	
	(<i>B</i>) P(1	LCM =	= 5n) =	11/36				B1	
			,						
	(<i>C</i>) P(1	I CM -	> 6 ∩ I	CM –	$5n) - \frac{1}{2}$	2/9		M1	Use of diagram
			2011 L		511) – .	21)		A1 cao	
(iii)									
(111)	$\frac{1}{3} \times \frac{11}{36}$	$\frac{1}{2} \neq \frac{2}{2}$						M1	Use of definition
	5 36	o 9							
	Hence	events	are no	t inder	enden	t		E1	
	Tience	e , ento		t mac _r	,enden	L			

(A)	$P(First team) = 0.9^3 = 0.729$	A1	
(<i>B</i>)	$P(\text{Second team}) = 0.9 \times 0.9 \times 0.1 + 0.9 \times 0.1 \times 0.5 + 0.1 \times 0.9 \times 0.5$	M1 M1	1 correct triple 3 correct triples added
	= 0.081 + 0.045 + 0.045 = 0.171	A1	audeu
(iii)	P(asked to leave) = 1 - 0.729 - 0.171		
	= 0.1	B1	
(iv)	P(Leave after two games given leaves)		
	$=\frac{0.1\times0.5}{0.1} = \frac{1}{2}$	M1 ft A1 cao	Denominator
(v)	P(at least one is asked to leave)	M1 ft	Calc'n of 0.9
	$=1-0.9^3 = 0.271$	M1 A1 cao	1 – ()³
(vi)	P(Pass a total of 7 games)		
	=P(First, Second, Second) + P(First, First, Leave after three games)	M1 M1 ft	Attempts both 0.729(0.171) ²
	$= 3 \times 0.729 \times 0.171^2 + 3 \times 0.729^2 \times 0.05$	M1 ft	0.05(0.729) ²
	= 0.064 + 0.080 = 0.144	M1 A1 cao	multiply by 3

7 (i)	$X \sim B\left(15, \frac{1}{6}\right)$		
	$P(X=0) = \left(\frac{5}{6}\right)^{15} = 0.065$	M1 A1 cao	$\left(\frac{5}{6}\right)^{15}$
(ii)	$P(X=4) = {\binom{15}{4}} \times {\left(\frac{1}{6}\right)^4} \times {\left(\frac{5}{6}\right)^{11}}$		$\left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^{11}$
	= 0.142 (or 0.9102-0.7685)	M1 A1 cao	multiply by $\binom{15}{4}$

	PMT

-		-	
(iii)	$P(X > 3) = 1 - P(X \le 3)$	M1	
	$I(X > 3) = I I(X \ge 3)$	A1	
	= 1 - 0.7685 = 0.232		
()		D1	Definition of n
(iv)	Let n - make hility of a six on any throw	B1	Definition of p
(A)	Let $p = probability$ of a six on any throw 1	B1	Both hypotheses
	$H_0: p = \frac{1}{6}$ $H_1: p < \frac{1}{6}$		
	$\mathbf{v} = \mathbf{p} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$		
	$X \sim B\left(15, \frac{1}{6}\right)$	M1	0.065
	P(X=0) = 0.065	M1 dep	Comparison
	$0.065 < 0.1$ and so reject H_0		
	Conclude that there is sufficient evidence at	E1 dep	
	the 10% level that the dice are biased against		
	sixes.	B1	Both hypotheses
(\mathbf{D})	Let p = probability of a six on any throw		
(<i>B</i>)	$H_0: p = \frac{1}{6}$ $H_1: p > \frac{1}{6}$		
	$X \sim B\left(15, \frac{1}{6}\right)$	M1	0.09
		M1 dep	Comparison
	$P(X \ge 5) = 1 - P(X \le 4) = 1 - 0.910 = 0.09$	E1 dep	
	$0.09 < 0.1$ and so reject H_0	Li dep	
	Conclude that there is sufficient evidence at		
	the 10% level that the dice are biased in favour of sixes.	E1	Contradictory
		E1	By chance
	Conclusions contradictory.		
(v)	Even if null hypothesis is true, it will be		
	rejected 10% of the time purely by chance. Or other sensible comments.		
L		l	Ι